Journal Publications


Google Scholar



49. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights

Q. Gao, P. Hemanth, Y. Huang,  K. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q, He, H. Xin, H. Zhu, Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat Commun 13, 2338 (2022).


48. Heterostructured Bi–Cu2S nanocrystals for efficient CO2 electroreduction to formate

X. Han, T. Mou, S. Liu, M. Ji, Q. Gao, Q. He, H. Xin, H. Zhu, Nanoscale Horizons (2022).



47. Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting

 TL. Jin, X. Liu, Q. Gao, H. Zhu, C. Lian, J. Wang, R. Wu, Y. Lyu,  Chemical Engineering Journal (2021): 134089.

46. Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction

B. Min, Q. Gao, Z. Yan, X. Han, K. Hosmer, A. Campbell, H. Zhu,  Industrial & Engineering Chemistry Research60(41), 14635-14650.

45. Mesoporous carbon-supported ultrasmall metal nanoparticles via a mechanochemical-driven redox reaction: A “Two-in-One” strategy.

TL. Jin, X. Liu, YQ. Su, F. Pan, X. Han, H. Zhu, R. Wu, Y. Lyu, Applied Catalysis B: Environmental, 294, 120232.

44. Electrocatalysis in confined spaces: interplay between well-defined materials and the microenvironment.

X. Han, Q. Gao, Z. Yan, M. Ji, C. Long, H. Zhu, Nanoscale, 13 (3), 1515-1528.


43. Monodisperse PdSn/SnO x core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance.

Q. Gao, T. Mou, S. Liu, G. Johnson, X. Han, Z. Yan, M. Ji, Q. He, S. Zhang, H. Xin, H. Zhu, Journal of Materials Chemistry A, 8 (40), 20931-20938.

42. Tuning regioselective oxidation toward phenol via atomically dispersed iron sites on carbon.

Y. Ding, P. Zhang, H. Xiong, X. Sun, A. Klyushin, B. Zhang, Z. Liu, J. Zhang, H. Zhu, Z. Qiao, S. Heumann and S. Dai, Green Chemistry, 2020.


41. Harnessing strong metal-support interactions via a reverse route.

P. Wu, S. Tan, J. Moon, Z. Yan, V. Fung, N. Li, S. Yang, Y. Cheng, C. W. Abney, Z. Wu, A. Savara, A. M. Momen, D. Jiang, D. Su, H. Li, W. Zhu, S. Dai and H. Zhu, Nature Communications, 2020. 11: 3042.(Editors' Highlights:


40. Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion.

B. Wang, S. Yang, H. Chen, Q. Gao, Y. Weng, W. Zhu, G. Liu, Y. Zhang, Y. Ye, H. Zhu, H. Li, J. Xia, Applied Catalysis B: Environmental, 2020. 227(15): 119170.

ref. 39

39. Boosting Electrosynthesis of Ammonia on Surface-Engineered MXene Ti3C2.

J. Xia, S. Yang, B. Wang, P. Wu, I. Popovs, H. Li, S. Irle, S. Dai, and H. Zhu, Nano Energy, 2020. 104681.



38. Recent Advanced Materials for Electrochemical and Photoelectrochemical Synthesis of Ammonia from Dinitrogen: One Step Closer to a Sustainable Energy Future.

Z. Yan, M. Ji, J. Xia and H. Zhu, Advanced Energy Materials, 2019. 10 (11): 2070049.


nanoscale 19

37. Promoting Pt catalysis for CO oxidation via the Mott–Schottky effect.

P. Wu, Z. Wu, D. R. Mullins, S. Yang, X. Han, Y. Zhang, G. Foo, H. Li, W. Zhu, S. Dai and H. Zhu, Nanoscale, 2019. 11 (40): 18568-18574.

(Back Cover inside)


36. Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming.

H. Peng, X. Zhang, X. Han, X. You, S. Lin, H. Chen, W. Liu, X. Wang, N. Zhang, Z. Wang, P. Wu, H. Zhu and S. Dai, ACS Catalysis, 2019. 9 (10): P. 7239–7246.


paper 35

35. High-Performance Electrolytic Oxygen Evolution with Seamless Armor Core-Shell FeCoNi Oxynitride. 

J. Di , H. Zhu , J. Xia , J. Bao , P. Zhang , S. Yang , H. Li and S. Dai, Nanoscale, 2019. 11 (15): P. 7239–7246.


34. Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. 

J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow, M. Chi, Y. Jia, P. Zhang, D.A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y.S. Kim, A.A. Peterson, K.L. More, H. Zhu, and S. Sun, Joule, 2019. 3(1): p. 124-135.


33. Optimizing the structural configuration of FePt-FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. 

X. Liu, Z.D. Hood, Q. Zheng, T. Jin, G.S. Foo, Z. Wu, C. Tian, Y. Guo, S. Dai, W. Zhan, H. Zhu, and M. Chi, Nano Energy, 2019. 55: p. 441-446.


  1. Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance. P. Wu, J. He, L. Chen, Y. Wu, H. Li, H. Zhu, H. Li, and W. Zhu, Journal of Energy Chemistry, 2018. 27(5): p. 1509-1515.


  2. Tailoring N-Terminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. P. Wu, S. Yang, W. Zhu, H. Li, Y. Chao, H. Zhu, H. Li, and S. Dai, Small, 2017. 13(44): p. 1701857.


30. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation.

W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo, Y. Guo, G. Lu, S. Sun, S. Dai, and H. Zhu, Journal of the American Chemical Society, 2017. 139(26): p. 8846-8854.


29. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. 

W. Zhu, Z. Wu, G.S. Foo, X. Gao, M. Zhou, B. Liu, G.M. Veith, P. Wu, K.L. Browning, H.N. Lee, H. Li, S. Dai, and H. Zhu, Nature Communications, 2017. 8: p. 15291.

  1. Surfactant-Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. W. Zhan, Y. Shu, Y. Sheng, H. Zhu, Y. Guo, L. Wang, Y. Guo, J. Zhang, G. Lu, and S. Dai, Angewandte Chemie International Edition, 2017. 56(16): p. 4494-4498.

  2. NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Z. Xi, A. Mendoza-Garcia, H. Zhu, M. Chi, D. Su, D.P. Erdosy, J. Li, and S. Sun, Green Energy & Environment, 2017. 2(2): p. 119-123.

  3. Sustainable synthesis of alkaline metal oxide-mesoporous carbons via mechanochemical coordination self-assembly. W. Shan, P. Zhang, S. Yang, H. Zhu, P. Wu, H. Xing, and S. Dai, Journal of Materials Chemistry A, 2017. 5(45): p. 23446-23452.



25. Controlled Gas Exfoliation of Boron Nitride into Few-Layered Nanosheets. 

W. Zhu, X. Gao, Q. Li, H. Li, Y. Chao, M. Li, S.M. Mahurin, H. Li, H. Zhu, and S. Dai, Angewandte Chemie International Edition, 2016. 55(36): p. 10766-10770.


24. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects. 

Z. Zhang, M. Chi, G.M. Veith, P. Zhang, D.A. Lutterman, J. Rosenthal, S.H. Overbury, S. Dai, and H. Zhu, ACS Catalysis, 2016. 6(9): p. 6255-6264.

  1. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. Y. Bai, D. Yan, C. Yu, L. Cao, C. Wang, J. Zhang, H. Zhu, Y.-S. Hu, S. Dai, J. Lu, and W. Zhang, Journal of Power Sources, 2016. 308: p. 75-82.

  2. Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their application for heterogeneous catalysis. M. Lukosi, H. Zhu, and S. Dai, Frontiers of Chemical Science and Engineering, 2016. 10(1): p. 39-56.

  3. Controlled synthesis of Au–Fe heterodimer nanoparticles and their conversion into Au–Fe3O4 heterostructured nanoparticles. G. Jiang, Y. Huang, S. Zhang, H. Zhu, Z. Wu, and S. Sun, Nanoscale, 2016. 8(41): p. 17947-17952.

  4. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. P. Wu, W. Zhu, Y. Chao, J. Zhang, P. Zhang, H. Zhu, C. Li, Z. Chen, H. Li, and S. Dai, Chemical Communications, 2016. 52(1): p. 144-147.



19. Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. 

G. Jiang, H. Zhu, X. Zhang, B. Shen, L. Wu, S. Zhang, G. Lu, Z. Wu, and S. Sun, ACS Nano, 2015. 9(11): p. 11014-11022.


18. Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. 

H. Zhu, P. Zhang, and S. Dai, ACS Catalysis, 2015. 5(11): p. 6370-6385.

  1. Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating. Q. Wu, X. Zhang, S. Sun, N. Wan, D. Pan, Y. Bai, H. Zhu, Y.-S. Hu, and S. Dai, Nanoscale, 2015. 7(38): p. 15609-15617.

  2. Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions. P. Zhang, H. Zhu, and S. Dai, ChemCatChem, 2015. 7(18): p. 2788-2805.


15. Constructing Hierarchical Interfaces: TiO2-Supported PtFe–FeOx Nanowires for Room Temperature CO Oxidation. 

H. Zhu, Z. Wu, D. Su, G.M. Veith, H. Lu, P. Zhang, S.-H. Chai, and S. Dai, Journal of the American Chemical Society, 2015. 137(32): p. 10156-10159.

  1. Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles. A. Mendoza-Garcia, H. Zhu, Y. Yu, Q. Li, L. Zhou, D. Su, M.J. Kramer, and S. Sun, Angewandte Chemie International Edition, 2015. 54(33): p. 9642-9645.

  2. Surface Profile Control of FeNiPt/Pt Core/Shell Nanowires for Oxygen Reduction Reaction. H. Zhu, S. Zhang, D. Su, G. Jiang, and S. Sun, Small, 2015. 11(29): p. 3545-3549.

  3. Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. L. Wu, Q. Li, C.H. Wu, H. Zhu, A. Mendoza-Garcia, B. Shen, J. Guo, and S. Sun, Journal of the American Chemical Society, 2015. 137(22): p. 7071-7074.

  4. New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, and S. Sun, Nano Letters, 2015. 15(4): p. 2468-2473.

  5. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance. H. Lu, P. Zhang, Z.-A. Qiao, J. Zhang, H. Zhu, J. Chen, Y. Chen, and S. Dai, Chemical Communications, 2015. 51(27): p. 5910-5913.



9. Core/Shell Au/MnO Nanoparticles Prepared Through Controlled Oxidation of AuMn as an Electrocatalyst for Sensitive H2O2 Detection. 

H. Zhu, A. Sigdel, S. Zhang, D. Su, Z. Xi, Q. Li, and S. Sun, Angewandte Chemie, 2014. 126(46): p. 12716-12720.

  1. Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, and S. Sun, Journal of the American Chemical Society, 2014. 136(21): p. 7734-7739.

  2. Monolayer Assembly of Ferrimagnetic CoxFe3–xO4 Nanocubes for Magnetic Recording. L. Wu, P.-O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, and S. Sun, Nano Letters, 2014. 14(6): p. 3395-3399.

  3. Halide ion-mediated growth of single crystalline Fe nanoparticles. S. Zhang, G. Jiang, G.T. Filsinger, L. Wu, H. Zhu, J. Lee, Z. Wu, and S. Sun, Nanoscale, 2014. 6(9): p. 4852-4856.



5. Monodisperse MxFe3–xO4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction. 

H. Zhu, S. Zhang, Y.-X. Huang, L. Wu, and S. Sun, Nano Letters, 2013. 13(6): p. 2947-2951.


4. Synthetic Control of FePtM Nanorods (M = Cu, Ni) To Enhance the Oxygen Reduction Reaction. 

H. Zhu, S. Zhang, S. Guo, D. Su, and S. Sun, Journal of the American Chemical Society, 2013. 135(19): p. 7130-7133.

  1. FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. S. Guo, D. Li, H. Zhu, S. Zhang, N.M. Markovic, V.R. Stamenkovic, and S. Sun, Angewandte Chemie, 2013. 125(12): p. 3549-3552.


  2. Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. S. Zhang, S. Guo, H. Zhu, D. Su, and S. Sun, Journal of the American Chemical Society, 2012. 134(11): p. 5060-5063.


  3. Multifunctional necklace-like Cu@cross-linked poly(vinyl alcohol) microcables with fluorescent property and their manipulation by an external magnet. S. Zhang, H. Zhu, Z. Hu, L. Liu, S. Chen, and S. Yu, Chemical Communications, 2009(17): p. 2326-2328.


Book Chapters

Tailoring Nanoparticle Electrocatalysts for Proton Exchange Membrane Fuel Cells. H. Zhu, Y. Huang, S. Zhang, Catalysis by Materials with Well-defined Structures, ed. Z. Wu, S. Overbury, Elsevier, Chapter 10, 2015.



Multimetallic nanoparticle catalysts with enhanced electrooxidation. S. Sun, S. Zhang, H. Zhu, S. Guo.  US 2015/9093715 B2.